Type USVD Ultra-Precision Voltage Dividers

Voltage Ratings up to 2000 Volts DC · Ratio Tolerance to 0.01% · Ratio TC: 2 ppm/°C

Type USVD Ultra-Precision Voltage Dividers have the highest precision available in the voltage range of 450 Volts DC to 2000 Volts DC. These voltage dividers are formed by bonding together two selected USF300 Series Ultra-Precision Resistors. The precise selection of the USF300 Resistors makes possible the outstanding voltage divider performance:

- Ratio Tolerance as tight as 0.01%
- Ratio TC: 2 ppm/°C

The USVD2 voltage dividers are ideal for high performance DC voltage measurement applications in Test & Measurement Equipment, Medical Equipment, Industrial Equipment, and Laboratory Equipment.

For Ultra-Precision Voltage Dividers, with higher voltage ratings of up to 5000 Volts DC, see the **Type HVD5 Voltage Dividers.**

For Voltage Dividers designed for AC Power Quality Monitoring and Metering applications, see the **Type VMN Voltage Monitoring Resistor Networks** that provide outstanding precision and long-term stability in electrical service monitoring applications, with transient voltage conditions.

Part Number	Vmax Maximum Continuous Operating Voltage (VDC)	Voltage Divider Ratio RT : R2	Resistance			Ratio	Ratio TC	
			R1	R2	RT = R1 + R2	Tolerance (RT : R2)	(RT : R2)	Ratio VC (RT : R2)
USVD2-B1M-010-02	450	100 : 1	990K	10 K	1 Meg	0.01%	2 ppm/°C	0.05 ppm/V
USVD2-B1M-025-02	450	100 : 1	990K	10 K	1 Meg	0.025%	2 ppm/°C	0.05 ppm/V
USVD2-B2M-010-02	650	100 : 1	1.98 Meg	20 K	2 Meg	0.01%	2 ppm/°C	0.02 ppm/V
USVD2-B2M-025-02	650	100 : 1	1.98 Meg	20 K	2 Meg	0.025%	2 ppm/°C	0.02 ppm/V
USVD2-A10M-010-02	1400	1,000 : 1	9.99 Meg	10 K	10 Meg	0.01%	2 ppm/°C	0.02 ppm/V
USVD2-A10M-025-02	1400	1,000 : 1	9.99 Meg	10 K	10 Meg	0.025%	2 ppm/°C	0.02 ppm/V
USVD2-B10M-010-02	1400	100 : 1	9.90 Meg	100 K	10 Meg	0.01%	2 ppm/°C	0.02 ppm/V
USVD2-B10M-025-02	1400	100 : 1	9.90 Meg	100 K	10 Meg	0.025%	2 ppm/°C	0.02 ppm/V
USVD2-A20M-010-02	2000	1,000 : 1	19.98 Meg	20 K	20 Meg	0.01%	2 ppm/°C	0.02 ppm/V
USVD2-A20M-025-02	2000	1,000 : 1	19.98 Meg	20 K	20 Meg	0.025%	2 ppm/°C	0.02 ppm/V
USVD2-B20M-010-02	2000	100 : 1	19.80 Meg	200 K	20 Meg	0.01%	2 ppm/°C	0.02 ppm/V
USVD2-B20M-025-02	2000	100 : 1	19.80 Meg	200 K	20 Meg	0.025%	2 ppm/°C	0.02 ppm/V

Custom Type USVD Voltage Dividers are formed from USF300 Series Resistors with Standard Resistance Values to achieve custom Voltage Division Ratios between 100:1 and 1,000:1: available with an MOQ of 250 pieces. See the Type USF Data Sheet for a list of Standard Resistance Values.

A customized version of the standard Type USVD Voltage Dividers, that has specifications adjusted to optimize the performance and cost for your application (such as ratio tolerance of 0.05% and ratio TC of 5 ppm/°C): available with MOQ of 1,000 pieces.

For assistance, contact Caddock Applications Engineering by phone (541-496-0700) or email (caddock@caddock.com).

Specifications:

Ratio Tolerance (RT : R2): 0.01% or 0.025%, measured at $+23^{\circ}C \pm 2^{\circ}C$, with 100 volts DC applied to the divider.

Ratio TC (RT : R2): 2 ppm/°C, referenced to +25°C, ΔR taken at -40°C and +85°C

Ratio Voltage Coefficient (RT : R2): See table. Ratio VC measured at 10% to 100% of Vmax.

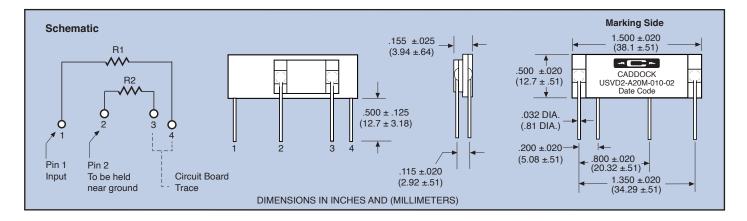
Absolute Tolerance: ±0.1% for all resistors, measured at +23°C ±2°C.

Absolute TC: 10 ppm/°C, referenced to +25°C, ΔR taken at -40°C and +85°C.

Voltage Rating (Vmax): Maximum Continuous Operating Voltage (DC) applied to RT, see Table.

Overvoltage: 1.5 times Vmax, applied to RT for 5 seconds, ratio change 0.01% max.

Ratio Stability Under Load: Change in Ratio, with Vmax. applied to the Divider


Ambient +85°C: Initial 1,000 hours ratio change 0.015% max.

Ambient +50°C: Initial 1,000 hours ratio change 0.01% max.

Shelf Ratio Stability: Less than 20 ppm/yr, typical, for the first year. Extended Shelf Ratio Stability (10 years) 10 ppm/yr, maximum.

Thermal Shock: Mil-Std-202. Method 107, Cond. A, except minimum temperature is -40°C, ratio change 0.02% max.

Operating Temperature: -40°C to +85°C **Terminal Finish:** Matte Tin (Sn)

Sales and Applications Engineering 17271 North Umpqua Hwy. Roseburg, Oregon 97470-9422 Phone: (541) 496-0700 email: caddock@caddock.com